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ABSTRACT: Ribosomally synthesized posttranslationally modi-
fied peptides (RiPPs) are a rapidly growing class of natural
products with diverse structures and activities. In recent years, a
great deal of progress has been made in elucidating the
biosynthesis of various RiPP family members. As with the study
of nonribosomal peptide and polyketide biosynthetic enzymes,
these investigations have led to the discovery of entirely new
biological chemistry. With each unique enzyme investigated, a
more complex picture of Nature’s synthetic potential is revealed.
This Review focuses on recent reports (since 2008) that have changed the way that we think about ribosomal natural product
biosynthesis and the enzymology of complex bond-forming reactions.

How does one measure the impact that natural products
have had on human health and science as a whole?

Natural products, or the derivatives thereof, encompass the
lion’s share of drugs in therapeutic use.1−3 The exquisite
complexity of these compounds has served as a source of
inspiration for organic chemists for over a century, leading to
the development of reaction methodologies too numerous to
list.3,4 Synthetic organic chemistry as we know it today would
likely not exist had the study of natural products been
neglected. While the impact on human therapeutics and
synthesis has been immense, natural products research also
enabled the study of fundamental biological processes. For
example, research into the mode of action of antibiotics
continues to provide insight into bacterial biochemistry and
physiology,5−7 while compounds such as phalloidin (filamen-
tous actin stabilizer), rapamycin (mTOR inhibitor), and
tunicamycin (N-glycosylation inhibitor) have become invalu-
able tools for probing eukaryotic cell biology.8−10 Furthermore,
the study of natural products has provided a window through
which the chemical toolbox of Nature can be explored,
revolutionizing the way we think about the chemistry of
biological systems. With the vast majority of Nature’s
biosynthetic potential remaining to be discovered,11,12 the
study of natural products will likely dominate the endeavors of
future generations of scientists.
A class of natural products receiving significant recent

attention is the ribosomally synthesized posttranslationally
modified peptides (RiPPs).13,14 Comprising the lanthipeptides,
microcins and the thiazole/oxazole-modified microcins
(TOMMs), among others, RiPPs occupy a large chemical,
genetic, and functional space but remain linked by a common
mechanism of biosynthesis. In all cases, a ribosomally
synthesized precursor peptide undergoes modification by a
set of tailoring enzymes usually found in the local genomic
region (i.e., within the biosynthetic gene cluster, Figure 1).

These modifications include, but are not limited to, varied
cyclizations, dehydrations, and rearrangements, all of which are
responsible for endowing the peptide with a rigidified structure
and biological activity. The tailoring enzymes encoded in the
biosynthetic gene cluster govern the posttranslational mod-
ifications received, and in some cases, the structure of the final
product can be accurately predicted.15−17 In most cases,
modification is followed by the proteolytic removal of a N-
terminal leader peptide required for recognition by the tailoring
enzymes, and the mature compound is exported.18 Using this
simple strategy, a varied compound library can be constructed
from a minimal amount of genetic space. In fact, the
investigation of RiPPs has overturned the longstanding
paradigm that large genomes are required for an organism to
produce architecturally complex natural products.19,20

Adding to the allure of this class of natural products is the
gene-encoded nature of the precursor peptide coupled with the
often high level of promiscuity of the biosynthetic enzymes,
allowing for the facile generation of unnatural compound
derivatives.13,17,21−23 This approach has garnered a great deal of
excitement due to the potential to develop therapeutically
relevant derivatives of this underutilized compound class.24,25

The profound interest in these natural products has fueled
extensive studies into biosynthetic mechanisms. This Review
will focus on the recent successes in the field and discuss the
advancement that these discoveries have made in the
understanding of biological chemistry. RiPP biosynthetic
enzymes are classically categorized by the subfamily into
which their natural product falls (lanthipeptide, TOMM, etc.).
However, for the purposes of this Review, they will be grouped
on the basis of the chemical transformations they catalyze to
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both highlight the interrelationships of these disparate tailoring
enzymes and better illustrate Nature’s remarkable synthetic
abilities.

■ ATP-DRIVEN CYCLIZATIONS

Given the ubiquity of ATP as a biological energy currency and
its status as an enzymatic cofactor/cosubstrate, it is perhaps not
surprising that ATP is heavily employed in the posttranslational
modification of ribosomal natural products. In recent years,
there have been multiple biosynthetic reports illustrating the
use of ATP by enzymes to catalyze varied cyclizations on
ribosomal peptide backbones. Below, three examples are
discussed.
Cyclodehydration in Thiazole/Oxazole Biogenesis.

Thiostrepton was the first azole/azoline-containing RiPP
natural product to be structurally characterized.26 Although
the structures of other thiazol(in)e- and oxazol(in)e-containing

natural products were solved over the following 25 years, it was
not until the mid-1990s that the first insights into azole
biosynthesis were revealed with the study of microcin B17.27

Following this discovery, just two additional biosynthetic gene
clusters of this type were identified over the next decade
(streptolysin S28 and patellamide A/C29), and the unification of
the TOMM family as a whole was only recently realized.20 The
seminal paper characterizing the TOMM synthetase demon-
strated that azole heterocycles were installed on the precursor
peptide in a two-step process through the action of a
heterotrimeric enzymatic complex. First, the ATP-dependent
cyclodehydration of select Ser, Thr, and Cys residues affords
the azoline heterocycles. Subsequently, in clusters containing a
dehydrogenase, select azoline rings are oxidized to the aromatic
azoles.27 Studies conducted on various TOMM biosynthetic
complexes provided insights into the mechanism of substrate
handling and the dehydrogenase activity assigned to a flavin

Figure 1. Example of RiPP natural product diversity. The general strategy for RiPP biosynthesis is illustrated in the generic gene cluster and
schematic below. The functional assignment for each of the open reading frames is displayed. An array of ribosomal natural products generated from
this strategy is displayed along with their molecular target. In all figures within this Review, the red moieties represent posttranslational modifications
where the tailoring enzyme(s) responsible have been characterized. The modification mechanisms for the blue moieties are unknown and are shown
to highlight additional chemistry that remains unexplored in RiPP modification enzymes.
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mononucleotide-binding protein (B protein), and the mecha-
nism of select ancillary tailoring enzymes from thiopeptide- and
cyanobactin-type clusters was elucidated, the more recent of
which will be described in greater detail below.30−37 However,
the mechanism of ATP utilization and the exact role of the
other two proteins in the heterotrimeric complex (C and D)
remained enigmatic due to the relative experimental intract-
ability of the enzymes responsible for microcin B17,
streptolysin S, and patellamide A/C biosynthesis.
Recently, our group reported the characterization of a novel

TOMM synthetase complex from Bacillus sp. Al Hakam.23 In
vitro reconstitution of this tractable enzyme complex facilitated
the discovery that ATP is directly used to phosphorylate the
amide backbone of the peptide substrate.38 This information
was used in conjunction with a recent report of azoline
formation in engineered intein domains39 and the discovery of
depsipeptide bonds in naturally produced microcin B1740 to

propose a mechanism of azoline biosynthesis (Figure 2A). In
this mechanism, phosphorylation of the peptide backbone
drives the tetrahedral intermediate toward oxygen elimination
and azoline formation rather than N-protonation and ester
formation, as seen in autoprocessing enzymes.41 This
innovative use of ATP resembles the chemistry employed by
the purine biosynthetic enzymes PurL and PurM42 but was
unprecedented in the study of ribosomal natural products.
Moreover, single turnover experiments assigned this phosphor-
ylation activity to the YcaO protein homologue in the
cyclodehydratase complex, providing the first definitive activity
for a member of this poorly understood protein family.38 Since
this initial report, two bottromycin biosynthetic clusters
encoding YcaO homologues have been identified that are
predicted to catalyze cyclodehydration in the absence of a C
protein. This indicates that select YcaO members may have
evolved to act as stand-alone cyclodehydratases.43−46 Fur-

Figure 2. Cyclizations via backbone activation. (A) A mechanistic proposal for the biosynthesis of azoline heterocycles in TOMM natural products.
The first step is shared with the mechanism of protein splicing. Following phosphorylation and elimination of phosphate, a FMN-dependent
dehydrogenation affords the aromatic azole (red). (B) Two possible strategies for the biosynthesis of azoline heterocycles in PKS/NRPS natural
products (e.g., epothilone). The top route is ATP-independent, while the bottom follows the mechanism of the TOMM cyclodehydratase complex.
As the mechanism for the Cy-dependent azoline formation is unknown, the moiety is shown in blue. (C) The structure of bottromycin A2 is shown
with the putative YcaO-installed modifications highlighted in orange. Modifications installed by uncharacterized mechanisms are shown in blue.

Figure 3. Microcin C7 biosynthesis. The mechanism of the MccB-catalyzed phosphoramidate bond installation is shown with the final
posttranslational modification of the precursor peptide displayed in red. Addition of the aminopropyl group (blue) to the phosphoramidate moiety is
proposed to be catalyzed by MccD and/or MccE enzymes. Upon entering a target cell, the N-terminal six amino acids are proteolyically removed to
afford the bioactive compound.
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thermore, a second YcaO homologue in the bottromycin
clusters has been predicted to catalyze the formation of the
highly unusual macrolactamidine ring via direct activation of
the carbonyl backbone (Figure 2C). Additional studies are
required to validate these activities. Finally, because many of the
bioinformatically identifiable YcaO homologues do not appear
in recognizable TOMM clusters, the possibility remains that
this mechanism of amidine formation is more widespread than
previously thought.
The strategy used in RiPP natural product biosynthesis

represents the fourth known strategy for the construction of
azole heterocycles. Two other examples are found in thiamin
biogenesis,47 the most recently characterized of which involves
a bona f ide suicide enzyme.48 The remaining azole-synthesizing
pathway comes from nonribosomal peptide synthetases
(NRPS). Similar to TOMM biogenesis, these megasynthases
are predicted to catalyze azole formation through sequential
cyclodehydration (catalyzed by a Cy domain) and oxidation
(Ox domain) reactions; however, the mechanistic details of
these transformations remain ill-defined.49,50 Currently, it is
believed that these proteins do not require an energy source,
such as ATP, to catalyze cyclodehydration (Figure 2B).
However, to our knowledge, no study on a NRPS Cy domain
has been conducted in the absence of ATP, as the adenylation
domains in these modules require ATP for substrate loading.
Consequently, the possibility remains that Cy domains utilize a
strategy similar to TOMM cyclodehydratases.
Cyclodehydration as a Reaction Intermediate. Micro-

cin C7 (MccC7) is a plasmid-encoded RiPP produced by some
strains of Escherichia coli to inhibit the growth of closely related
species.51 MccC7 contains an unusual phosphoramidate (N−P)
linkage between a C-terminal aspartate and AMP, as well as an
aminopropylation of the phosphoramidate moiety (Figure 3).52

The sequence of the gene cluster demonstrated that a third
posttranslational modification occurred during MccC7 matura-
tion, as the naturally encoded C-terminal asparagine residue is
converted to isoasparagine (isoAsn) by an unknown mecha-
nism.53,54 Subsequently, it was discovered that the 7-mer
peptide was not the bioactive form of MccC7. Rather, the six N-
terminal amino acids facilitate uptake of the antibiotic into

target cells. After entry, cellular proteases cleave off these N-
terminal residues, releasing the adenylated warhead, which
disrupts protein synthesis through aspartyl-tRNA synthetase
inhibition.55,56 As such, MccC7 is commonly referred to as a
“Trojan horse” antibiotic.
The discovery of the Trojan horse mode of action revitalized

interest in MccC7 biosynthesis. As is the case for many RiPPs,
bioinformatic analysis provided the first insights into how
biosynthesis might occur. Of the three genes required for
MccC7 maturation (mccB, mccD, and mccE), mccB was
homologous to E1 ubiquitin-activating enzymes and thus was
the most likely choice for the formation of the N−P bond.57

Indeed, the characterization of MccB validated this functional
assignment and demonstrated that 2 equiv of ATP were
consumed during N−P bond formation. The use of 15N-Asn7-
labeled MccC7 precursor peptide generated a product that had
two 15N labels, indicating that the nitrogen of the asparagine
side chain was incorporated into the phosphoramidate linkage.
Additionally, a kinetically competent succinimide intermediate
was identified during substrate processing. On the basis of these
observations, the mechanism displayed in Figure 3 was
proposed.57 In agreement with other adenylating enzymes,
the first proposed step is an adenylation of the C-terminal
carboxylate. This modification activates the C-terminus of the
peptide and facilitates an intramolecular cyclization with Asn7,
generating the succinimide ring identified in the aforemen-
tioned experiments. A second equivalent of ATP is then used to
adenylate the nitrogen on the succinimide ring, and subsequent
hydrolysis of the activated heterocycle with water affords the
phosphoramidate linkage and the isoAsn residue. Importantly,
the observation that the isoAsn7 derivative of MccA was not a
substrate for MccB provided strong support for a mechanism
involving direct adenylation of the succinimide nitrogen.
The reaction carried out by MccB is notable for several

reasons: (1) a formal cyclodehydration is employed to generate
an intermediate that is subject to further tailoring, (2) MccB
adenylates two weak nucleophiles in succession in a single
active site, (3) the reraction represented the first instance of an
E1 ubiquitin-activating enzyme homologue that modifies a
small peptide, and (4) MccB was the first adenylating enzyme

Figure 4. Lanthionine ring formation in lanthipeptides. The mechanism of dehydration of Ser/Thr residues to generate dehydroalanine/
dehydrobutyrine moieties (orange) in lanthipeptides is displayed. In all studied cases, dehydration is ATP-dependent and proceeds through a
phosphorylated intermediate. Subsequently, a cyclase domain catalyzes a Michael-type addition to form the lanthionine rings (purple). In a subclass
of lanthipeptides, a second Michael-addition occurs to generate a labionin ring (green). In all cases, the enzymes responsible for each transformation
are displayed in the same color as the modification they install.
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shown to create an N−P bond. The latter two aspects of MccB
catalysis are of particular interest, as they expand the known
chemistry of adenylating enzymes and can potentially provide a
platform to better understand their evolution. In a follow-up
study, the crystal structure of MccB was solved and the peptide
specificity of the adenylation enzyme was established.58 The
crystal structure had the typical E1 superfamily fold but had a
large N-terminal extension domain that served as a “peptide
clamp” for binding MccA. Removal of this clamp abolished
MccA processing, but activity could be partially restored by
adding the extension in trans. Notably, it is the strong
interactions of this clamp with the substrate that allow the
peptide to undergo multiple adenylations in a single active site
by preventing intermediate release. Such a mechanism is also
used by the macrocyclase involved in cyanobactin biosynthesis
(vide inf ra).59

ATP-Dependent Dehydration and Cyclization in
Lanthipeptides Biosynthesis. lanthipeptides are the arche-
typical members of the RiPP natural product family and are the
only RiPPs to see widespread commercial use. Nisin, the first
characterized lanthipeptide, is an inhibitor of Gram-positive
bacteria and has been utilized as a food preservative for over 50
years without reported resistance.60 As such, a substantial
amount of work has been done to both understand the
biosynthesis of the eponymous lanthionine rings and engineer
novel lanthipeptide derivatives.13,24,60,61 The β-thioether link-
ages in lanthipeptides are assembled via a two-step process.
First, a dehydratase catalyzes the ATP-dependent dehydration
of Ser/Thr residues to afford dehydroalanine/dehydrobutyrine
moieties (Figure 4). Subsequently, a lanthipeptide cyclase
catalyzes the regioselective Michael-type addition of a Cys thiol
to a particular unsaturated position. For all characterized

lanthipeptide cyclases, this step is ATP-independent but
requires an ATP-dependent dehydration to generate a suitable
electrophile. As the enzymes responsible for these trans-
formations have been thoroughly reviewed,61 they will not be
discussed further. However, the recent discovery of a novel
lanthipeptide cyclase, LabKC, capable of catalyzing C−C bond
formation deserves a brief mention.62,63 Whereas canonical
lanthipeptide cyclases resolve the enolate intermediate formed
after Cys thiol attack through protonation, the LabKC enzyme
quenches the enolate through a second Michael addition to
afford a labionin ring (Figure 4). Further characterization of the
labionin cyclases is required to understand how these enzymes
catalyze tandem macrocycle formation. Moreover, additional
posttranslational modifications continue to be identified within
this RiPP subfamily, promising a wealth of biological chemistry
still to be uncovered.60,61

■ ATP-INDEPENDENT CYCLIZATIONS

As discussed above, an energy source is often required during
the cyclization of RiPPs to both accelerate leaving group
departure and overcome the entropic barrier to cyclization.
Even lanthipeptide thioether biogenesis requires ATP to
generate the electrophile for cyclization (vide supra). Cyclases
that do not require any external energy source for catalysis are
of particular interest, as these proteins have evolved unique
strategies to overcome cyclization barriers. Below, we will
discuss two recently described cases of such enzymes involved
in RiPP biosynthesis.

Cyanobactin Macrocyclization. Cyanobactins are a
diverse class of macrocyclized RiPPs produced by cyanobacteria
isolated from soil, marine, and freshwater environments.15,17,64

Figure 5. Strategies for natural product macrocyclization. (A) Cyanobactin biosynthetic scheme. Oxazoline (OxH; purple) and thiazole (Thz;
purple) heterocycles are installed on cyanobactin precursor peptides by PatD (cyclodehydratase) and the N-terminal oxidation domain of PatG.
After heterocycle installation, the peptide is proteolyzed by PatA and PatG, the latter also catalyzing macrocyclization (red). (B) The PatG
macrocyclization mechanism is displayed with the catalytic triad shown. The residues important for recognition in the C-terminal AYDG recognition
sequence are colored orange. (C) As a comparison, a mechanism for the DEBS thioesterase domain (non-RiPP) is displayed. This mechanism is
conserved in a majority of the characterized PKS and NRPS thioesterases.
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With over 100 identified members, these often azol(in)e-
containing peptides have become a prime example for RiPP
diversity.16,21,65 Despite the heterogeneity of this compound
class, the associated posttranslational tailoring enzymes display
remarkable sequence similarity, suggesting that the enzymes
possess a high degree of promiscuity.15,22,66 As a result,
cyanobactin biosynthetic enzymes have gained attention as
suitable targets for bioengineering efforts.22,25,67 In several
notable cases, cyanobactin precursor peptides encode for more
than one natural product (e.g., PatE encodes for patellamide A
and C).29 PatE modification begins with the installation of
azole(in)e heterocycles by PatD, a TOMM synthetase (Figure
5A).68 Next, a subtilisin-like protease, PatA, removes the leader
peptide and separates the heterocyclized patellamide A/C
peptides, each bearing an AYDG sequence at their C-termini.33

This tetrapeptide motif serves as a recognition sequence for
another subtilisin-like protease, PatG. In vitro studies
demonstrated that PatG removes the C-terminal AYDG tag
and facilitates cyanobactin N-to-C macrocyclization.33 Given
the homology to subtilisin, a mechanism was proposed where
the acyl-enzyme intermediate was resolved with the N-
terminus, rather than water, to generate the macrolactam.
Recently, the crystal structure of the central PatG macro-

cyclase domain, PatGmac, was solved.59 As expected, PatGmac
adopts the subtilisin-like fold. However, PatG contains an
additional loop positioned over the active site. The PatG-type
protease/macrocyclase proteins all contain a 30−50 amino acid
insertion between two of the three residues involved in
subtilisin catalytic triad, providing a bioinformatic handle for
identifying cyanobactin macrocylases.33 An analysis of PatGmac
cocrystallized with a peptide substrate demonstrated that this

insertion was responsible for shielding the active site from
water and also binding of the AYDG sequence.59 Using both
site-directed mutagenesis and selective truncations of this
insertion sequence, it was determined that any disruption of
AYDG recognition or water shielding resulted in a loss of
macrocyclase, but not protease, activity. To further demonstrate
the importance of the insertion in the macrocyclization
reaction, Lys598, a residue that forms a pivotal salt bridge
with the aspartate of the AYDG motif, was mutated. As
expected, the K598D mutant was able to catalyze AYDG
cleavage, but not macrocyclization. However, if a PatE substrate
analogue bearing a complementary AYKG sequence was
supplied to K598D, macrocyclization activity was restored.
Combined with the observation that the acyl-enzyme
intermediate is remarkably long-lived, the mechanism in Figure
5B was proposed. In this mechanism, the insertion loop
prevents AYDG peptide dissociation after cleavage until the N-
terminus displaces it and resolves the covalent intermediate.
The PatG-catalyzed transformation is extraordinary for three

reasons: (1) unlike the thioesterase domains in polyketide and
nonribosomal peptide synthetases (Figure 5C), PatG macro-
cyclization occurs on an unactivated substrate without an
external energy source, (2) the prime side specificity
(recognition is C-terminal to the scissile bond) of PatG
facilitates the processing of hypervariable substrates with a
minimal sequence tag is in stark contrast to other subtilisin-like
proteases, and (3) the strong sequence similarity to subtilisin
proteases suggests that these proteins have been naturally
evolved to catalyze a variety of chemical transformations.33

Importantly, all three of these properties are enabled by the
addition of a short insertion to the subtilisin fold. Altering

Figure 6. [4 + 2] cycloadditions in natural product biosynthesis. (A) Two potential mechanisms for installing the pyridine moiety of thiocillin I
(red). Starting from the tautomer form, the orange arrows demonstrate a concerted Diels−Alder mechanism, while the purple arrows follow a
stepwise, polar mechanism. The shared step of each mechanism is displayed as a dashed black arrow. After the [4 + 2] cycloaddition is complete, the
elimination of water and the leader peptide (LP) affords the central pyridine ring. The colored circles on the tautomer form of the noncyclized
intermediate indicate positions where dual 13C-labeling could distinguish between stepwise and concerted cyclization mechanisms. (B) The SpnF-
catalyzed cycloaddition of spinosin A (red) is displayed. The colored circles indicate positions where dual 2H-labeling could be used for establishing
the precise mechanism.
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protein function by such a simple and elegant means begs the
question as to whether such insertions are a general strategy
utilized by Nature to expand the catalytic versatility of
biosynthetic enzymes.
Thiopeptide Macrocyclization: The discovery of a

Diels−Alderase? While cyanobactins are head-to-tail macro-
lactams, the central macrocycle found in all thiopeptides is
formed through a cycloaddition process that forms two
carbon−carbon linkages.69 This macrocyclization forms the
ubiquitous thiopeptide (dehydro)pyridine ring, which is critical
for target recognition.70 Recent investigations into thiocillin
biosynthesis have demonstrated that the pyridine ring is
assembled via the TclM-catalyzed trans-annular heteroannula-
tion of two dehydroalanine residues.71,72 This formal [4 + 2]
cycloaddition has received a great deal of attention, as it has
been postulated to proceed through an aza-Diels−Alder
mechanism. Although the Diels−Alder is one of the most
widely employed reactions in organic synthesis, no naturally
occurring catalyst has been definitively shown to carry out a
concerted [4 + 2] cycloaddition.73 Theoretically, 13C primary
kinetic isotope effects (KIEs) could be used to determine if the
TclM-catalyzed cycloaddition occurs via a stepwise or
concerted mechanism (Figure 6A; see ref 74 for an in-depth
discussion of KIEs and how they are used to support enzymatic
mechanisms). To perform this experiment, the two differ-
entially (dual) labeled substrates shown in Figure 6A would be
required. If the mechanism were concerted, a primary 13C KIE
would be observed with both substrates; however, if cyclo-
addition occurred via a stepwise mechanism, a KIE would be
observed for only one of the dual-labeled substrates. While this
experiment may seem relatively straightforward, in practice it
will be difficult. TclM has never been reconstituted in vitro, the
heterocyclized and dehydrated substrate is not readily
accessible, and the expected primary 13C KIEs require a highly
sensitive kinetic assay to measure. A more tractable alternative
for the discovery of a bona f ide Diels−Alderase may be to
examine the enzyme responsible for the [4 + 2] cycloaddition
in spinosin A biosynthesis (Figure 6B).75 While SpnF is not
responsible for producing a RiPP, it has been reconstituted in
vitro, the reaction allows for the use of 2H secondary KIEs
(which are typically 30% larger than 13C primary KIEs),74 and
the substrate is more amenable to chemical synthesis.

■ RADICAL CHEMISTRY IN RIPP MATURATION
The radical S-adenosylmethionine (rSAM) family of proteins is
responsible for carrying out some of the most difficult
biological transformations. Using a 4Fe-4S cluster ligated by
three cysteine residues, typically in an easily identifiable
CxxxCxxC motif, these proteins use the Fe-S cluster to perform
a reductive cleavage of the labile sulfonium moiety of SAM to
afford methionine and a 5′-deoxyadenosine (5′-Ado) radical.76
This radical is then used to carry out a variety of synthetically
challenging reactions.76−79 The functionality of the rSAM
proteins continues to expand as more members of the family
are characterized. In just the past three years, a large role for
rSAM enzymes in RiPP biosynthesis has emerged. The
following section highlights recently elucidated chemistry
performed by these enzymes.
Radical Rearrangements in Thiopeptide Biosynthesis.

While the presence of the core macrocycle is seen in all
thiopeptides, select family members also contain a second
macrocycle.69 This ring is not formed from the gene-encoded
peptide sequence but rather occurs through the posttransla-

tional attachment of a modified tryptophan.80−84 Currently,
two flavors of this auxiliary macrocycle have been identified. In
thiostrepton, the macrocycle is composed of a L-tryptophan-
derived quinaldic acid moiety, whose biosynthesis occurs via a
complex and poorly understood pathway and thus will not be
discussed further.81,82,85 In contrast, nosiheptide contains an
indolic acid derivative, which is assembled via the action of two
rSAM enzymes, NosL and NosN (Figure 7A).80 Through

genetic studies, it was discovered that deletion of nosL
abolished nosiheptide production, but that supplementation
of 3-methyl-2-indolic acid (MIA) rescued product formation.
Moreover, a nosN deletion formed a nosiheptide derivative with
MIA attached via a single thioester linkage rather than the
expected 3,4-dimethyl indolic acid derivative. These results
were used to putatively assign NosL and NosN as the enzymes
involved in the rearrangement of L-tryptophan to MIA and the
methylation of the unactivated C4 position, respectively.80

To better understand the transformation of L-tryptophan to
MIA, NosL was recently heterologously expressed and
investigated in vitro.34 Support for assigning NosL as the sole
protein responsible for MIA formation came initially from the
detection of MIA in NosL-expressing E. coli. Further character-
ization demonstrated that NosL reductively cleaved SAM and
used the 5′-Ado radical to form MIA. Reactions conducted with
[1-13C]- and [3-13C]-labeled L-tryptophan showed that both
carbons were retained during the transformation, while
reactions conducted with [2H8]-L-tryptophan established that

Figure 7. Mechanism of MIA formation in nosiheptide biosynthesis.
(A) The structure of nosiheptide with the indolic acid ring highlighted
in red. The uncharacterized radical SAM methyltransferase, NosA, and
an as of yet unidentified protein methylate and oxidize MIA to afford
the second attachment point (blue moiety). (B) The proposed
mechanism of indolic acid formation by the radical SAM protein
NosL. The structures of the intermediates/products enclosed in the
dotted circles were detected in reaction mixtures. The colored asterisks
denote 13C-labeled positions that were used to demonstrate the fate of
the carbon backbone during the rearrangement.
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initial hydrogen abstraction does not occur from any of the C−
H bonds in tryptophan. Fortuitously, a detailed analysis of the
NosL product profile identified four side products: 3-
methylindole, glyoxate, glycine, and formaldehyde. This led to
the mechanistic proposal presented in Figure 7B. On the basis
of the [2H8]-L-tryptophan experiment, the 5′-Ado radical is
proposed to abstract the N−H hydrogen to generate a
stabilized indole radical. This radical then fragments to form
3-methylene indole and a glycine radical, derivatives of which
were identified as shunt products. Subsequent radical attack on
the C2 position of the indole ring and decomposition of the
glycine subunit to form formaldehyde and ammonium afford
MIA. A subsequent report on NocL, a NosL homologue in
nocathiacin MIA biogenesis, directly detected the glycine
radical by EPR, supporting the proposed mechanism.86

Prior to the study of NosL, no member of the rSAM
superfamily had been shown to catalyze both the fragmentation
and rearrangement of a substrate.79 While this chemistry is
noteworthy, glutamate mutase, a cobalamin-dependent enzyme,
catalyzes a similar fragmentation−rearrangement reaction.87

Glutamate mutase uses a cobalamin-generated 5′-Ado radical to
perform C−H abstraction. Akin to the NosL mechanism, the
resulting radical decomposes into a glycine radical and acrylate.
In a final step, these recombine to afford 2-methylaspartate.
However, unlike glutamate mutase, NosL catalyzes a
fragmentation−recombination reaction with elimination of a
portion of the molecule during the transformation. The
discovery of this complex radical transformation adds to the
ever-expanding list of reactions catalyzed by rSAM proteins and
serves as another demonstration of how Nature adjusts a
general strategy to accomplish a specific reaction.
A Tale of Two Fe-S Clusters: Subtilosin Thioether

Biogenesis. Subtilosin A is a broad spectrum antimicrobial
RiPP produced by Bacillus subtilis.88,89 In addition to a head-to-
tail macrocyclization, subtilosin A contains unusual thioether
linkages connecting the sulfurs of Cys4, Cys7, and Cys13 to the
α-carbons of Phe31, Thr28, and Phe22, respectively.90 Since
the structure of subtilosin A was determined, similar linkages
have been discovered in only four other RiPPs, although
genome mining suggests more exist.91−94 Genetic studies of
subtilosin A biosynthesis demonstrated that three genes, albA,
albE, and albF, were responsible for the maturation of the linear
precursor peptide, SobA.95,96 AlbE and AlbF are homologous to
proteases and are predicted to be involved in leader peptide
cleavage and macrocyclization. AlbA, on the other hand, shares
homology with rSAM proteins and was predicted to install the
thioether linkages on subtilosin A (Figure 8A).90 Indeed, AlbA
was demonstrated to be necessary and sufficient to catalyze
thioether formation on SobA via the reductive cleavage of
SAM.97 By subjecting both wild-type AlbA and a Fe-S cluster
deficient mutant (CxxxCxxC triple mutant) to spectroscopic
interrogation, it was discovered that AlbA contained two 4Fe-
4S clusters. The first, ligated by Cys129, Cys133, and Cys136,
was responsible for SAM coordination and 5′-Ado radical
generation, while the function of the second cluster was
unknown. As expected from studies on other rSAM enzymes
with two Fe-S clusters,98−100 mutation of the cysteine residues
within the second cluster (Cys408, Cys414, and Cys414)
abolished activity.94,97 Studies to assign a precise functional role
for this auxiliary 4Fe-4S cluster utilized an AlbA mutant with
the first Fe-S cluster removed. UV−vis spectra showed an
absorbance shift to the remaining 4Fe-4S cluster upon the
addition of SobA. This shift was leader peptide-dependent,

suggesting that proper substrate binding is required to place the
peptide in close proximity of the second Fe-S cluster within the
protein.
The above results were used to propose the mechanism

displayed in Figure 8B. The 5′-Ado radical generated from the
reductive cleavage of SAM by the primary 4Fe-4S cluster is
used to abstract the hydrogen from the α-carbon of Phe31,
Thr28, and Phe22. This radical then attacks the appropriate
cysteine thiol, which is ligated to the ancillary Fe-S cluster. The
second 4Fe-4S cluster is proposed to facilitate the second
electron oxidation of the thiol to generate the thioether linkage,
in a fashion analogous to other rSAM-dependent oxidations.99

Figure 8. Subtilosin biosynthesis. (A) The general biosynthetic
scheme for subtilosin. Residues involved in thioether cross-linking are
colored (red, donor residue; purple, receiver residue). The protein(s)
responsible for leader peptide (LP) cleavage and macrocyclization
(blue) have not been characterized. (B) A proposed mechanism of
thioether formation. The first Fe-S cluster is involved in radical
generation, while the second cluster serves as a one-electron oxidant of
the cysteine thiol.
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Radical SAM-Dependent Methylation: Future Work in
RiPP Biosynthesis. Various positions within thiopeptides are
methylated, despite being unactivated and non-nucleophilic,
such as the C4 methylation of MIA (Figure 9; vide supra).80,101

Furthermore, recent efforts have identified similar modifications
in other RiPP biosynthetic clusters, including the bottromycins
and polytheonamides.43−46,102 In certain cases, labeling studies
indicated that SAM was the source of these methyl
groups;103,104 however, the unactivated nature of the carbon
suggested that a radical mechanism would be necessary for
modification. Accordingly, recent studies conducted on two
rRNA methyltransferases, RlmN and Cfr, provided the first
definitive evidence that rSAM enzymes can perform methyl-
ation reactions.105,106 These proteins have become the
founding members of the radical SAM methyltransferase
(RSMT) protein family, of which there are three bioinformati-
cally identifiable classes.101 Class A is solely composed of RlmN
and Cfr, contains only a rSAM domain, and is the best
characterized class to date. However, as these enzymes are
involved in ribonucleotide methylation and not RiPP biosyn-
thesis, they will not be discussed further. Rather, focus will be
placed on class B and class C RSMTs because analyses of
several RiPP biosynthetic clusters demonstrate that in all cases

where the natural product is methylated at an unactivated
position, a RSMT of class B or C is present.
In addition to the canonical rSAM domain, class B RSMTs

contain a N-terminal cobalamin-binding domain. The first class
B RSMT to be characterized was TsrM, which is involved in
thiostrepton biosynthesis. This enzyme was recently recon-
stituted in vitro and exhibited a novel strategy for methyl-
ation.107 TsrM catalyzed the SAM and cobalamin-dependent
methylation of the C2 position of tryptophan (Figure 9), which
has been predicted to be the precursor for the quinaldic acid
moiety.82 Unlike all other rSAM homologues, TsrM did not
carry out the reductive cleavage of SAM despite containing a
CxxxCxxC ligated Fe-S cluster.107 Instead, SAM was used as a
methyl source for the in situ formation of a methylcobalamin
cofactor, which then serves as the methyl source for tryptophan
methylation. Although the mechanism of methyltransfer from
the methylcobalamin cofactor to tryptophan remains enigmatic,
preliminary data suggest that the Fe-S cluster may be pivatol for
this transformation. While this initial study of TsrM is
interesting from a mechanistic standpoint, it has larger
implications for the classification of the rSAM superfamily.
TsrM contains the ubiquitous Fe-S cluster ligation motif
characteristic of rSAM proteins and is SAM-dependent but
does not catalyze the reductive cleavage of SAM. This stands in
stark contrast to all other rSAMs and prompts the question as
to whether TsrM should be considered a true member of the
family. Moreover, the characterization of additional class B
RSMTs will be required to determine if this unusual utilization
of SAM by a rSAM domain is a conserved strategy for
methylation of unactivated positions.
To date, no member of the class C RSMTs has been

reconstituted. These proteins share significant similarity to the
rSAM protein coproporphyrinogen III oxidase (HemN), which
is responsible for the oxidative decarboxylation of copropor-
phyrinogen III to form protoporphyrinogen IX in heme
biogenesis.108 Although class C RSMTs contain both a
HemN-like rSAM domain and a domain similar to the C-
terminus of HemN (Figure 9), they lack the N-terminal “trip-
wire” domain of HemN.101 Studies on HemN have
demonstrated that the rSAM TIM barrel core binds two

Figure 9. Radical SAM-dependent methylations in RiPPs. Shown are
several examples of RSMT-dependent RiPP modifications (red
highlight). Shown below each structure is the class of RSMT and its
domain architecture (CBD, cobalamin-binding domain). The blue
moieties are installed by uncharacterized enzymes. R = H, R′ = Ph or
R = Me, R′ = Me/Et.

Figure 10. Cyanobactin prenylation. (A) The two forms of O-prenylation along with examples of natural products containing each modification. (B)
The LynF prenylation mechanism. After reverse O-prenylation of tyrosine, the intermediate undergoes a Claisen rearrangement to afford the C-
prenylated product. As the product of the Lyn cluster has not been identified, the predicted product is displayed without stereochemistry. The
DMAPP derived prenyl groups are shown in red.

ACS Chemical Biology Reviews

dx.doi.org/10.1021/cb3005325 | ACS Chem. Biol. 2013, 8, 473−487481



molecules of SAM,109 and a comparison to class C RSMTs
hints that these enzymes may also simultaneously bind two
SAM molecules.101 Additional study of these putative
methyltransferases is required to fully understand the variety
of methods Nature has developed for the methylation of
unactivated carbon.

■ LEADER PEPTIDE-INDEPENDENT MODIFICATIONS
Apart from the NosL-catalyzed rearrangement of L-tryptophan
and the macrocyclization of cyanobactins, all of the
modifications discussed above require a leader peptide for
recognition by the tailoring enzymes. This broadly employed
strategy in RiPP biosynthesis facilitated the evolution of
tremendous diversity within the natural product class by
separating substrate recognition from the modified regions of
the peptides.18 Nonetheless, recent investigations of disparate
RiPP biosynthetic pathways have uncovered several posttransla-
tional modification machineries that function in a leader
peptide-independent fashion. A few of these unusual cases are
discussed below.
C-Prenylation through a Claisen Rearrangement.

Among other modifications, select cyanobactins are further
decorated by O-prenylation. Deriving from dimethylallyl
pyrophosphate (DMAPP), this modification is observed at
Ser, Thr, and Tyr residues. Ser and Thr prenylation occurs
through the C3 position of DMAPP (reverse prenylation).
Conversely Tyr prenylation appears to occur exclusively
through the C1 position (forward prenylation; Figure 10A).65

This modification is notable, as the only known O-prenylated
RiPPs are cyanobactins. On the basis of comparative genomics,
TruF and its homologues were tentatively assigned as O-
prenyltransferases.15 However, this assignment was complicated
by the fact that TruF-like proteins are not homologous to
known prenyltransferases and are essential in the biosynthesis
of nonprenylated cyanobactins as well.15,17

In 2011, the first insights into cyanobactin prenylation
emerged with the in vitro reconstitution of a prenyltransferase
from Lyngbya aestuarii, LynF.35 While the product of the Lyn
cluster remains uncharacterized, initial activity screens with
various peptides substrates confirmed that LynF was a tryrosine
prenyltransferase. Unexpectedly, LynF displayed a strong
selectivity for macrocyclized substrates over linear peptides.
Moreover, LynF was not able to prenylate substrates with
leader peptides regardless of whether they contained azol(in)e
heterocycles. Considering that heterocyclization occurs prior to
macrocyclization, this suggested that prenylation is the final
step in cyanobactin biosynthesis. Further analysis of the
substrate promiscuity demonstrated that LynF displayed
relaxed sequence specificity, but a definitive set of modification
rules could not be established. This prompted the question as
to how substrate recognition was achieved in vivo given that
LynF did not utilize the standard leader peptide recognition
strategy used by most RiPP tailoring enzymes. Reaction
products were analyzed by 2D-NMR to definitively establish
the site of Tyr prenylation. Surprisingly, the spectra showed
that LynF catalyzed forward C-prenylation ortho to the
phenolic oxygen, rather than O-prenylation. Similar trans-
formations have been characterized in other biosynthetic
pathways, which were proposed to proceed via electrophilic
aromatic substitution.110 To evaluate the mechanism of LynF
prenylation, reaction products were analyzed with multiple
spectroscopic methods over a reaction time course. The results
demonstrated that the substrate initially undergoes reverse O-

prenylation but slowly converts to the forward C-prenylated
phenol, most likely through a Claisen rearrangement (Figure
10B).
Although highly similar reaction schemes have been

synthetically employed,111,112 LynF represents the first instance
of enzymatic C-prenylation via a reverse O-prenylation/Claisen
rearrangement route. Additional experiments concluded that
this rearrangement occurs at a slow but measurable rate (0.23
h−1) in the absence of enzyme, demonstrating that reverse O-
prenylated phenols are prone to spontaneous rearrangement.35

This result provides a possible explanation as to why reverse O-
prenylated phenol rings are not seen in natural products, while
reverse O-prenylated hydroxyl moieties are common. It remains
uncertain whether the rearrangement is truly uncatalyzed in vivo
or if the product of the Lyn cluster is actually C-prenylated.
Regardless, LynF remains the only RiPP prenyltransferase
characterized to date and demonstrates that C-prenylation in
natural product biosynthesis can be achieved via a Claisen
rearrangement, as was predicted for over 40 years.113

S-Glycosylations in RiPP Biogenesis. Sublancin is a RiPP
originally discovered in strains of B. subtilis containing SPβ-
prophage.114 The initial structural assignment of sublancin
reported the presence of two lanthionine rings and a disulfide
bridge.115 Recently, the structure of sublancin was revised to
contain two disulfide bridges and an S-glycosylated Cys (Figure
11).116 Analysis of the gene cluster and subsequent in vitro

reconstitution identified that sunS catalyzed the S-glycosylation
reaction. Investigations into the selectivity of SunS showed that
the selective S-glycosylation of Cys22 was both leader peptide-
and disulfide bond-independent. Additional experiments
demonstrated that this selectivity was not from the flanking
residues, suggesting that SunS must be recognizing the
substrate away from the glycosylated site. Indeed, a follow-up
study determined that substrate recognition occurred at a N-
terminal α-helical stretch in the peptide. This α-helix served as
a form of internal leader peptide, granting SunS a high level of
substrate promiscuity in the region surrounding Cys22 without
the use of a traditional leader peptide.117 Interestingly, this
follow-up study also assigned a putative role for the glycosyl
moiety. Although the modification was not required for activity
against sensitive strains of B. subtilis, the aglycone was active
against producer strains. This suggested that the glycosylation is
part of a novel immunity mechanism; however, further
experiments will be necessary to validate this hypothesis.

C-Terminal Amidation through Divergent Mecha-
nisms. The C-termini of many thiopeptides are amidated.
This modification, while easy to overlook when considering the
structural complexity of these heavily modified RiPPs, has an
important role in biological activity.36 Recently, the tailoring
machinery responsible for C-terminal amidation moiety has

Figure 11. Structure of sublancin. The modification installed by SunS
(S-glycosyltransferase) is shown in red.
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been characterized in thiostrepton and nosiheptide biosyn-
thesis.36,37 These studies demonstrated that two divergent
strategies have been utilized by Nature to perform the
amidation in a leader peptide-independent fashion. In
nosiheptide biosynthesis, genetic deletions and in vitro reactions
were used to identify nosA as the responsible gene.37 The
ΔnosA strain produced a nosiheptide analogue with an
additional C-terminal dehydroalanine moiety, which is derived
from the dehydration of the terminal serine of the precursor
peptide. Reactions with purified NosA validated this assignment
and revealed that pyruvate was a reaction byproduct. On the
basis of the pH dependence of the reaction and the cofactor-
independent activity of NosA, this reaction was predicted to
proceed via the enamide dealkylation mechanism displayed in
Figure 12A. Thiostrepton, on the other hand, requires at least
three enzymes to perform the same modification.36,81,82 An
unidentified methyltransferase is hypothesized to generate the
C-terminal methylester on the precursor peptide to facilitate
the dehydration of the terminal Ser. Subsequently, TsrB (also
called TsrU in ref 82) catalyzes the saponification of the
methylated thiostrepton intermediate. Finally, the carboxylate is
modified by an asparagine synthetase-like amidotransferase,
TsrC (also called TsrT in ref 82), which forms the amide
linkage, presumably though an adenylated intermediate.36 The
proposed mechanism of this modification is displayed in Figure
12B; however, additional studies are necessary to identify the
responsible methyltransferase and to establish the mechanism
of TsrC. Such disparate strategies employed by Nature to
accomplish identical transformations highlight the powerful
interplay of convergent evolution and biological activity.

■ OUTLOOK
Recent successes in the study of RiPP biosynthetic enzymes
have greatly expanded our view of Nature’s synthetic organic
potential. In addition to the discovery of novel biological
chemistry, these studies provide a window through which the
evolutionary adaptation of enzymes can be observed. However,
there are many tailoring enzymes that have yet to be
characterized and many posttranslational modifications whose
biosynthesis remains enigmatic. The topics covered in this
Review represent only a small set of the ever-expanding space
occupied by RiPPs. Further characterization of RiPPs and other
biosynthetic systems will be necessary if we are ever to fully
understand and intelligently exploit such enzymes.
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